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Today’s learning targets

• How to compute particle decay rates

• What is Fermi’s golden rule

• How to compute 2-body decay rates using Fermi’s golden rule
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Particle decay rates



Cross sections and decay rates
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• All calculation in particle physics revolve around particle interactions and decays (transition between states)

ATLAS-PHYS-PUB-2022-009 Nature 607 (2022) 60-68



Cross sections and decay rates
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• We can calculate transition rates using Fermi’s Golden Rule (see Chapter 2.3.6 in Thomson for the derivation) : 

• 𝚪𝒇𝒊: number of transitions per unit time from initial state | ⟩𝑖  to final state | ⟩𝑓  (not Lorentz Invariant!)

• 𝑻𝒇𝒊: transition matrix element (ME) determined by the Hamiltonian of the interaction (𝑗 is an intermediate particle)

•  𝝆 𝑬𝒇 : density of final states, 𝜌 𝐸# = $%
$& &!

• Decay rates depend on matrix elements (= fundamental particle physics) and densities of states (= kinematics)

𝑻𝒇𝒊 = ⟨𝒇 %𝑯 ⟩𝒊 +*
𝒋0𝒊

⟨𝒇 %𝑯 ⟩𝒋 ⟨𝒋 %𝑯 ⟩𝒊
𝑬𝒊 − 𝑬𝒋

+	… (𝟐)

𝚪𝒇𝒊 = 𝟐𝝅 𝑻𝒇𝒊
𝟐
𝝆 𝑬𝒇 (𝟏)

weak perturbation 



Particle decay rates
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• Two-body decay 𝑖 → 1 + 2

• The transition matrix element in first order perturbation theory is given by:

• Calculate the decay rate in first order perturbation theory describing the particle motion using plane-

wave (Born approximation)

𝑇23 = 8Ψ4Ψ5 %𝐻 ⟩Ψ6 = ;
7
Ψ4∗Ψ5∗ %𝐻Ψ3 𝑑9𝑥 (𝟑)

Ψ4 = 𝑁𝑒:3 <⃗.>⃗:?@ = 𝑁𝑒:3<.A (𝟒)

𝑁 is the normalisation



Particle decay rates
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• For the decay-rate computation we need to know (in a Lorentz Invariant form)

• wave-function normalisation 

• transition matrix element from perturbation theory

• expression for the density of states 

• Let’s consider wave-function normalisation first:

• non-relativistic formulation: normalise to one particle per cube of size 𝑎 

; ΨΨ∗ 𝑑𝑉 = 𝑁5𝑎9 = 1	 ⟹ 𝑁5 = 1/𝑎9 (𝟓)



Non-relativistic phase space
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• Apply boundary conditions: 𝑝⃗ = ℏ𝑘 

• Periodic boundary conditions on the wave function:

• Ψ 𝑥 + 𝑎, 𝑦, 𝑧 = Ψ 𝑥, 𝑦, 𝑧 	⟹ quantized particle momentum

• Volume of single state in momentum space:

• Normalising to one particle per unit volume gives the number of states in an element 

𝑑!𝑝⃗ = 𝑑𝑝"𝑑𝑝#𝑑𝑝$

𝑝! =
2𝜋𝑛!
𝑎 ;	 𝑝" =

2𝜋𝑛"
𝑎 ;	 𝑝# =

2𝜋𝑛#
𝑎 (𝟔)

2𝜋
𝑎

$
=

2𝜋 $

𝑉
(𝟕)

𝑑𝑛 =
𝑑$𝑝⃗
2𝜋 $/𝑉

×
1
𝑉
=

𝑑$𝑝⃗
2𝜋 $

(𝟖)



Non-relativistic phase space
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• Density of states in the Golden rule: 𝑝⃗ = ℏ𝑘 

• Transformation of the elements using Eq. 8 and 9: 𝑑!𝑝⃗ = 4𝜋𝑝%𝑑𝑝 (spherical coordinates)

• Larger final state momentum implies larger density of states (all other things being equal)

• decays to lighter particles are preferred

𝜌 𝐸% =
𝑑𝑛
𝑑𝐸 &'

=
𝑑𝑛
𝑑 𝑝⃗

𝑑 𝑝⃗
𝑑𝐸 &'

	 (𝟗)

𝑑𝑛
𝑑 𝑝⃗ =

1
2𝜋 $

𝑑$𝑝⃗
𝑑 𝑝 =

4𝜋𝑝'𝑑𝑝
2𝜋 $𝑑𝑝 =

4𝜋𝑝'

2𝜋 $ (𝟏𝟎)

𝐸' = 𝑝' +𝑚' 	⟹ 2𝐸𝑑𝐸 = 2𝑝𝑑𝑝	 ⟹
𝑑𝑝
𝑑𝐸 =

𝐸
𝑝 ≈

1
𝛽 (𝟏𝟏)

⟹ 𝜌 𝐸% =
4𝜋𝑝'

2𝜋 $
1
𝛽

(𝟏𝟐)



The Golden rule revisited
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• Rewrite the expression for density of states using a Dirac`s 𝛿 −function (backup slides?)

• Transformation of the elements using Eq. 8 and 9: 𝑑!𝑝⃗ = 4𝜋𝑝%𝑑𝑝 (spherical coordinates)

• Note: integrating over all final states energies but energy conservation now taken into account 

explicitly by the 𝛿 −function

• Hence the golden rule becomes an integral over all “allowed” final states of any energy:

𝜌 𝐸% =
𝑑𝑛
𝑑𝐸 &'

= 7
𝑑𝑛
𝑑𝐸

𝛿 𝐸 − 𝐸( 𝑑𝐸 	 since	𝐸% = 𝐸( (𝟏𝟒)

Γ23 = 2𝜋 𝑇23
5𝜌 𝐸2 (𝟏𝟑)

Γ23 = 2𝜋; 𝑇23
5𝛿 𝐸3 − 𝐸 𝑑𝑛 (𝟏𝟓)



The Golden rule revisited
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• For 𝑑𝑛 in a two-body decay, we only need to consider one particle as momentum conservation 

fixes the other

• We can also include momentum conservation explicitly by integrating over the momenta of both 

particles and using another 𝛿 −function

Γ%( = 2𝜋7 𝑇%(
'𝛿 𝐸( − 𝐸) − 𝐸'

𝑑$𝑝)
2𝜋 $	 (𝟏𝟔)

Γ%( = 2𝜋 *7 𝑇%(
'𝛿 𝐸( − 𝐸) − 𝐸' 𝛿$ 𝑝( − 𝑝) − 𝑝'

𝑑$𝑝)
2𝜋 $

𝑑$𝑝'
2𝜋 $

(𝟏𝟕)

𝐸 conservation 𝑝⃗ conservation density of states



Lorentz invariant phase space
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• In non-relativistic QM normalise to one particle/unit volume: ∫Ψ∗Ψ𝑑𝑉 = 1

• Considering relativistic effects: moving to different reference frame, volume contracts by 𝛾 = 𝐸/𝑚

• Particle density must therefore increase by 𝛾	 ⟹ Lorentz invariant wave-function normalisation 

must be proportional to 𝐸 particles per unit volume



Lorentz invariant phase space
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• Usual convention: normalise to 2𝐸 particles per unit volume: ∫Ψ'∗Ψ′𝑑𝑉 = 2𝐸

• Ψ' = 2𝐸Ψ is properly normalised to take into account relativistic space-time contraction

• Define Lorentz invariant matrix element, 𝑀(), in terms of the wave–functions normalized to 2𝐸 

particles per unit volume: 

𝑴𝒇𝒊 = ⟨𝚿𝟏L𝚿𝟐L … %𝑯 ⟩𝚿𝒂L𝚿𝒃L … = 𝟐𝑬𝟏𝟐𝑬𝟐…𝟐𝑬𝒂𝟐𝑬𝒃×𝑻𝒇𝒊 (𝟏𝟖)
final state initial state 



Two-body decay

14

• Expressing 𝑇() in terms of 𝑀() then gives

• 𝑀() uses relativistically normalised wave-functions and is Lorentz invariant

• .(/⃗
'0 ('&

	 is the Lorentz invariant phase space for each final state particle 

• the factor of 2𝐸 arises from the wave-function normalisation 

Γ%( =
2𝜋 *

2𝐸(
7 𝑀%(

'𝛿 𝐸( − 𝐸) − 𝐸' 𝛿$ 𝑝( − 𝑝) − 𝑝'
𝑑$𝑝)
2𝜋 $2𝐸)

𝑑$𝑝'
2𝜋 $2𝐸'

(𝟐𝟎)

𝑀%( = BΨ)1Ψ'1 D𝐻 ⟩Ψ(1 = 2𝐸)2𝐸'2𝐸(×BΨ)Ψ' D𝐻 ⟩Ψ2 = 2𝐸)2𝐸'2𝐸(×𝑇%( (𝟏𝟗)



Two-body decay
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• This form of Γ() is simply a rearrangement of the original equation but the integral is now frame-

independent (Lorentz invariant)

• Γ() is inversely proportional to 𝐸), the energy of the decaying particle

• this is an expected effect induced by time dilation

• Energy and momentum conservation are explicitly imposed by the 𝛿 −functions



Decay rate calculation
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• The integral is Lorentz invariant ⟹ can be evaluated in any frame ⟹ center-of-mass (CM) frame is 

the most convenient as the mother particle is at rest ⟹ 𝐸) = 𝑚), 𝑝) = 0

• Integrating over 𝑝% using the delta function

Γ%( =
2𝜋 *

2𝐸(
7 𝑀%(

'𝛿 𝐸( − 𝐸) − 𝐸' 𝛿$ 𝑝( − 𝑝) − 𝑝'
𝑑$𝑝)
2𝜋 $2𝐸)

𝑑$𝑝'
2𝜋 $2𝐸'

(𝟐𝟏)

Γ%( =
1

8𝜋'𝐸(
7 𝑀%(

'𝛿 𝑚( − 𝐸) − 𝐸' 𝛿$ 𝑝) + 𝑝'
𝑑$𝑝)
2𝐸)

𝑑$𝑝'
2𝐸'

(𝟐𝟐)

Γ%( =
1

8𝜋'𝐸(
7 𝑀%(

'𝛿 𝑚( − 𝐸) − 𝐸'
𝑑$𝑝)
4𝐸)𝐸'

(𝟐𝟑)



Decay rate calculation 
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• The integration over 𝑝% using the 𝛿 −function imposes p% = −𝑝* and therefore 𝐸%% = 𝑚%
% + 𝑝* %

• We can then write 𝑑!𝑝* = 𝑝*%𝑑𝑝*sin𝜃𝑑𝜃𝑑𝜙 = 𝑝*%𝑑𝑝*𝑑Ω which leads to:

Γ%( =
1

32𝜋'𝐸(
7 𝑀%(

'𝛿 𝑚( − 𝑚)
' + 𝑝)' − 𝑚'

' + 𝑝)'
𝑝)'𝑑𝑝)𝑑Ω
4𝐸)𝐸'

(𝟐𝟒)

Γ%( =
1

32𝜋'𝐸(
7 𝑀%(

'𝑔(𝑝))𝛿 𝑓 𝑝) 𝑑𝑝)𝑑Ω (𝟐𝟓)



Decay rate calculation 
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• Note that 𝑓 𝑝*  imposes energy conservation!

• CM momenta of the two decay products is fixed by 𝑓 𝑝* = 0 for 𝑝* = −𝑝% = 𝑝∗

Γ%( =
1

32𝜋'𝐸(
7 𝑀%(

'𝑔 𝑝) 𝛿 𝑓 𝑝) 	𝑑𝑝)𝑑Ω (𝟐𝟓)

𝑔 𝑝* =
𝑝*%

𝐸*𝐸%
=

𝑝*%

𝑚*
% + 𝑝*% (𝑚%

% + 𝑝*%)
	 (𝟐𝟔)𝑓 𝑝* = 𝑚) − 𝑚*

% + 𝑝*% − 	(𝑚%
% + 𝑝*%)



Decay rate calculation 
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• Integrating Eq. 25 and using the property of the 𝛿 −function we get

• Here, 𝑝∗ is the value for which 𝑓 𝑝∗ = 0

• From 𝑓 𝑝* = 0 (energy conservation) we get 𝑚) = 𝐸* + 𝐸%

7𝑔 𝑝) 𝛿 𝑓 𝑝) 𝑑𝑝) =
1

|𝑑𝑓/𝑑𝑝)|/∗
7𝑔 𝑝) 𝛿 𝑝 − 𝑝∗ 𝑑𝑝) = 𝑔 𝑝∗ /

𝑑𝑓
𝑑𝑝) /∗

(𝟐𝟕)

𝑑𝑓
𝑑𝑝)

= −
𝑝)

𝑚)
' + 𝑝)'

−
𝑝)

𝑚)
' + 𝑝)'

= −
𝑝)
𝐸)
−
𝑝)
𝐸'
= −𝑝)

𝐸) + 𝐸'
𝐸)𝐸'

(𝟐𝟖)

Γ%( =
1

32𝜋'𝐸(
7 𝑀%(

' 𝐸)𝐸'
𝑝) 𝐸) + 𝐸'

𝑝)'

𝐸)𝐸' /*4/∗
𝑑Ω =

1
32𝜋'𝐸(

7 𝑀%(
' 𝑝)

𝐸) + 𝐸' /*4/∗
𝑑Ω

	

(𝟐𝟗)

𝚪𝒇𝒊 =
𝒑∗

𝟑𝟐𝝅𝟐𝑬𝒊𝒎𝒊
; 𝑴𝒇𝒊

𝟐𝒅𝛀 (𝟑𝟎)𝚪𝒇𝒊 =
𝒑∗

𝟑𝟐𝝅𝟐𝑬𝒊𝒎𝒊
; 𝑴𝒇𝒊

𝟐𝒅𝛀



Decay rate calculation 
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• In the particle`s rest frame: 𝐸) = 𝑚)

• Valid for all two-body decays – fundamental physics contained in the matrix element, additional 

factors arise from the phase-space integral

• 𝑝∗ can be obtained from 𝑓 𝑝* = 0

𝑚( = 𝑚)
' + 𝑝∗' + 𝑚'

' + 𝑝∗'

⟹ 𝑝∗ =
1

2𝑚(
' 𝑚(

' − 𝑚) +𝑚'
' 𝑚(

' − 𝑚) −𝑚'
'

(𝟑𝟏)

(𝟑𝟎)
𝟏
𝝉
= 𝚪 =

𝒑∗

𝟑𝟐𝝅𝟐𝒎𝒊
𝟐; 𝑴𝒇𝒊

𝟐𝒅𝛀



Particle decays
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• A given particle may decay to more than one decay mode

• The total decay rate per unit time Γ is the sum of the individual decay rates

• 𝑁 remaining particles after time 𝑡

• The branching fraction for a specific decay mode is simply given by: 

(𝟑𝟐)Γ =*
P

ΓP

(𝟑𝟒)B j =
ΓP
Γ

𝑁 𝑡 = 𝑁 0 𝑒:Q@ = 𝑁 0 𝑒:@/S , 𝜏 = 1/Γ (𝟑𝟑)



Summary of Lecture 4

Main learning outcomes

• How to compute 2-body decay rates using Fermi’s golden rule

• How to deal with kinematics of particle decays

• The fundamental particle physics is in the matrix element

• The above equations are the basis for all calculations that follow
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Additional slides: Dirac 𝛿 −function
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• In the relativistic formulation of decay rates and cross sections we will make use of the Dirac δ 

function: “infinitely narrow spike of unit area”

;
:T

T
𝛿 𝑥 − 𝑎 𝑑𝑥 = 1

;
:T

T
𝑓 𝑥 𝛿 𝑥 − 𝑎 𝑑𝑥 = 𝑓 𝑎

• Any function with the above properties can represent 𝛿 𝑥 , e.g.:

𝛿 𝑥 = lim
U→W

1
2𝜋𝜎

𝑒:
A!
5U!

Infinitesimally narrow Gaussian



Additional slides: Dirac 𝛿 −function of a function
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• An expression for the 𝛿 −function of a function 𝛿 𝑓 𝑥 :

• start from the definition of a 𝛿 −function:

;
Z"

Z!
𝛿 𝑦 𝑑𝑦 = g1	 if	y4 < 0 < y5

0	 otherwise

;
A"

A!
𝛿 𝑓 𝑥

𝑑𝑓
𝑑𝑥 𝑑𝑥 = g1	 𝑖𝑓	𝑥4 < 0 < 𝑥5

0	 otherwise

• Now express in terms of 𝑦 = 𝑓 𝑥 , where 𝑓 𝑥+ = 0 and change variables



Additional slides: Dirac 𝛿 −function of a function
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• From the properties of a 𝛿 −function (i.e. only non-zero at 𝑥+) 

𝑑𝑓
𝑑𝑥

;
A"

A!
𝛿 𝑓 𝑥 𝑑𝑥 = g1	 𝑖𝑓	𝑥4 < 0 < 𝑥5

0	 otherwise

• Rearranging and expressing RHS as a 𝛿 −function

;
A"

A!
𝛿 𝑓 𝑥 𝑑𝑥 =

1
𝑑𝑓
𝑑𝑥 A#

;
A"

A!
𝛿 𝑥 − 𝑥W 𝑑𝑥 ⟹ 𝛿 𝑓 𝑥 =

𝑑𝑓
𝑑𝑥 A#

:4
𝛿 𝑥 − 𝑥W


