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Today’s learning targets

* How to compute particle decay rates
 What is Fermi’s golden rule

 How to compute 2-body decay rates using Fermi’s golden rule
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Cross sections and decay rates

* All calculation in particle physics revolve around particle interactions and decays (transition between states)
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Cross sections and decay rates

* We can calculate transition rates using Fermi’s Golden Rule (see Chapter 2.3.6 in Thomson for the derivation) :

i = 2m|Tp|“p(Ey) (1)

[s;: number of transitions per unit time from initial state [i) to final state |f)

T s;: transition matrix element (ME) determined by the Hamiltonian of the interaction (j is an intermediate particle)

T
H H
_<f|H|>+2<f| |1><1| L 2

];’—'l

weak perturbation

p(E;): density of final states, p(Ef) = |Z_Z

Decay rates depend on (= fundamental particle physics) and (= kinematics)



Particle decay rates 1
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» Two-body decay i - 1 + 2 2

* The transition matrix element in first order perturbation theory is given by:

T = (WYL |H|W;) = j WY HY; d3x 3)
|74

* Calculate the decay rate in first order perturbation theory describing the particle motion using plane-

wave (Born approximation)
l_Ijl — Ne—i(ﬁ.f—Et) — Ne—ip.x (4_)

/

N is the normalisation



Particle decay rates

* For the decay-rate computation we need to know (in a Lorentz Invariant form)
« wave-function normalisation
* transition matrix element from perturbation theory

* expression for the density of states

e Let’s consider wave-function normalisation first:

* non-relativistic formulation: normalise to one particle per cube of size a

j YY*dV = N?a® =1 = N? =1/a’ (5)



Non-relativistic phase space

Apply boundary conditions: § = Ak

N
0 IV

* Periodic boundary conditions on the wave function: a
* Y(x+ay2z) =%,y z) = quantized particle momentum Dy
27N, 21N 21N
y _ z -
Px = ) Py = ) Pz = (6) |
a a a | o | o ® o
* Volume of single state in momentum space: NN 2r 1
ol &) ad ——>
3 3 ' Il Px
e QI
a V pZ

Normalising to one particle per unit volume gives the number of states in an element

d3p = dp,dp,dp ) ;
xUPy“lz d3p 1 d3p (8)

A= v T @)




Non-relativistic phase space
* Density of states in the Golden rule: p = hk

dn d|p]
d|p| dE

dn
p(Er) = ‘d—E . (9)

Ey

» Transformation of the elements using Eq. 8 and 9: d3p = 4mp?dp (spherical coordinates)
dn _ 1 d3p _ Arp?dp _ 4mrp? (10)
dipl  @m)*dlpl (@2m)3dp (2m)3
E? = p* 4+ m* = 2EdE = 2pdp =@=Ezl (11)
dE p fp
(12)

 Larger final state momentum implies larger density of states (all other things being equal)

 decays to lighter particles are preferred

dp

Px



The Golden rule revisited

Iy; = 27| Ty p(Ef) (13)

Rewrite the expression for density of states using a Dirac's § —function (backup slides?)

Transformation of the elements using Eq. 8 and 9: d3p = 4np?dp (spherical coordinates)

,0( f) ‘ f 6(E — E;)dE since Ef = E; (14)

Note: integrating over all final states energies but energy conservation now taken into account

explicitly by the § —function

Hence the golden rule becomes an integral over all “allowed” final states of

(15)



The Golden rule revisited

* For dn in a two-body decay, we only need to consider one particle as

°P1
[y = 2nj|Tfl| S(E; — E, — Ey) (Zn)13 (16)

* We can also include momentum conservation explicitly by integrating over the momenta of both

particles and using another 6 —function

2 d3p; d3p,
Iri = lefil §(E; — E1 — E;)8°(p; — p1 — D2) (2n)13 - (17)
\ J\ J\ J
| | |

E conservation p conservation density of states

11



Lorentz invariant phase space

* In non-relativistic QM normalise to one particle/unit volume: [ W*WdV = 1

« Considering relativistic effects: moving to different reference frame, volume contracts by y = E/m

—

Ny S
ar N a'A

a
a aly

» Particle density must therefore increase by y = Lorentz invariant wave-function normalisation

must be proportional to E particles per unit volume

12



Lorentz invariant phase space

« Usual convention: normalise to 2E particles per unit volume: [ $"*W'dV = 2E

« P’ =+/2EVY is properly normalised to take into account relativistic space-time contraction

* Define Lorentz invariant matrix element, M;, in terms of the wave—functions normalized to 2E

particles per unit volume:

M = (P19 ... |[H|PyWy ...) = \/2E12E; ... 2E2EpXTy; (18)

final state initial state



Two-body decay

Mg = (W1W5 |H|W]) = \/2E1 2E,2E; x (W1 W, |H|W;) = /2E12E,2E; X Ty, (19)

* Expressing Tf; in terms of My; then gives

_ o)’

d’p;  d°p;

(2m)32E, (2m)3

2 — — —
j'Mfi| 6(E; —E; — E2)53(Pi —DP1 —D2) (20)

* Mp; uses relativistically normalised wave-functions and is

-

d3p
(2m)32E

is the Lorentz invariant phase space for each final state particle

* the factor of 2E arises from the wave-function normalisation



Two-body decay

* This form of I; is simply a rearrangement of the original equation but the integral is now frame-

independent (Lorentz invariant)

* If; is inversely proportional to Ej, the energy of the decaying particle

* this is an expected effect induced by time dilation

* Energy and momentum conservation are explicitly imposed by the § —functions



Decay rate calculation

_ ("

d3p;{ d3p,
Ffi =
2E,

~P1 =P 550F, (2n)72E,

(21)

2
f|Mfi| §(E; — E; — E»)8°(p;

* The integral is Lorentz invariant = can be evaluated in any frame = center-of-mass (CM) frame is

the most convenient as the mother particle is at rest =

1 P, d°Dp;

2 d3p
[ = jM- S(m; — E; — E,)83 (D7 + 1y) (22)
« Integrating over p, using the delta function
1 2 d°p;
[ = M| 6(m; —E; — E (23)



Decay rate calculation

* The integration over p, using the § —function imposes p, = —p; and therefore

« We can then write d3p; = p?dp,sinfdfd¢ = p?dp,dQ which leads to:

1 2 pidp,do)
05 = gz, | Wl°8 (mi = [ 42 = [ 47 ) AP 24)

4

1 = e | Ml 9@08( @) dpude (25)

1




Decay rate calculation

1
[ = 322, f|Mfi|29(P1)5(f(P1)) dp,dQ (25)

pi _ pi
EqE> \/(m1 + p?)(m3 + p7)

g(p1) =

f(p) =m; — \/(m1 + p1) \/ (mz + pz) (26)

* Note that f(p,) imposes energy conservation!

* CM momenta of the two decay products is fixed by f(p;) = 0 for p; = —p, =p"



Decay rate calculation

 Integrating Eq. 25 and using the property of the § —function we get

1 df
) dp, = J S(p—p*)dp, = * ‘—
jg(pl) (f(1))dps 4 Jdpyl g(p)6(p —p*)dpr = g(p*)/ dp,|. . (27)
* Here, p* is the value for which f(p*) = 0
af P1 p1 _ b EtE (28)

= - - = D
dps mZ+p? Jmi+p? B B R

1

2
. d.Q — 327T2Elf|Mfl|
b1=p

EVE, Pf
p1(E; + Ey) E1E,

P j|M-|2 & ‘ do
Ft = 32m2E, J 17 (B +EDL, _. (29)

* From f(p1) = 0 (energy conservation) we get m; = E; + E,

Iy = P
It ™ 32m2E;m;

j M| do (30)

19



Decay rate calculation

* In the particle's rest frame: E; = m;

p*
32m2m?

1 2
—=T= f|Mﬁ| dQ (30)

* Valid for all two-body decays — fundamental physics contained in the matrix element, additional

factors arise from the phase-space integral

* p* can be obtained from f(p;) =0

m; = \/mf +p*2 + \/m% + p*? 31)

1
= p = —2\/[7”12 — (my + mz)z][miz — (my — mz)z]
2Tni 20



Particle decays

A given particle may decay to more than one decay mode

The total decay rate per unit time I' is the sum of the individual decay rates

F=er (32)
J

N remaining particles after time ¢

N(@) =N(0)e Tt =N)e t/T ,t=1/T (33)

The branching fraction for a specific decay mode is simply given by:

B() = - (34)



Summary of Lecture 4

Main learning outcomes

* How to compute 2-body decay rates using Fermi’s golden rule
* How to deal with kinematics of particle decays
* The fundamental particle physics is in the matrix element

* The above equations are the basis for all calculations that follow



Additional slides: Dirac 6 —function

* In the relativistic formulation of decay rates and cross sections we will make use of the Dirac d

function: “infinitely narrow spike of unit area”

3()6 — (1) ! j_oo5(x —a)dx =1

f(x)

: | 7086 -ayax = f@
a X %

* Any function with the above properties can represent §(x), e.g.:
xZ
o)

Infinitesimally narrow Gaussian

0(x) = lim ==

23



Additional slides: Dirac &6 —function of a function

» An expression for the § —function of a function §(f (x)): / (x)

e start from the definition of a § —function:

Y2 (1 ify, <0<y, el
Ll o)ay = {0 otherwise 5(f(x))4

* Now express in terms of y = f(x), where f(xy) = 0 and change variables X0

sz 5(f(x))%dx _ {1 lf X1 <0< X2

X 0 otherwise
1

24



Additional slides: Dirac &6 —function of a function

« From the properties of a 6 —function (i.e. only non-zero at x)

d X5 .
‘d_fCLlS(f(x))dxz{l le1<O<X2

0 otherwise

* Rearranging and expressing RHS as a 6 —function

1

X 1 X2 d -
S(f(x)dx = =5=—| &0 —xp)dx = 6(f(x)) = & §(x — xg)
X1 ‘ﬁ X1 dx X0
dx

X0



